A viscosity method for solving convex feasibility problems
نویسندگان
چکیده
منابع مشابه
Distributed Algorithms for Solving a Class of Convex Feasibility Problems
In this paper, a class of convex feasibility problems (CFPs) are studied for multi-agent systems through local interactions. The objective is to search a feasible solution to the convex inequalities with some set constraints in a distributed manner. The distributed control algorithms, involving subgradient and projection, are proposed for both continuousand discrete-time systems, respectively. ...
متن کاملA finite steps algorithm for solving convex feasibility problems
This paper develops an approach for solving convex feasibility problems where the constraints are given by the intersection of two convex cones in a Hilbert space. An extension to the feasibility problem for the intersection of two convex sets is presented as well. It is shown that one can solve such problems in a finite number of steps and an explicit upper bound for the required number of ste...
متن کاملA Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملOn Projection Algorithms for Solving Convex Feasibility Problems
Due to their extraordinary utility and broad applicability in many areas of classical mathematics and modern physical sciences (most notably, computerized tomography), algorithms for solving convex feasibility problems continue to receive great attention. To unify, generalize, and review some of these algorithms, a very broad and exible framework is investigated. Several crucial new concepts wh...
متن کاملA Proximal Decomposition Method for Solving Convex Variational Inverse Problems
A broad range of inverse problems can be abstracted into the problem of minimizing the sum of several convex functions in a Hilbert space. We propose a proximal decomposition algorithm for solving this problem with an arbitrary number of nonsmooth functions and establish its convergence. The algorithm fully decomposes the problem in that it involves each function individually via its own proxim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Sciences and Applications
سال: 2016
ISSN: 2008-1901
DOI: 10.22436/jnsa.009.02.27